Skip to content

Vector Search Architecture

System Overview

The YAMS Vector Search system provides semantic search capabilities through a modular architecture that processes text into vector embeddings and enables similarity-based retrieval.

┌─────────────────────────────────────────────────────────────┐
│                     Application Layer                         │
├─────────────────────────────────────────────────────────────┤
│                    Semantic Search API                        │
├────────────┬────────────┬────────────┬────────────┬─────────┤
│  Document  │ Embedding  │   Vector   │   Model    │ Hybrid  │
│  Chunker   │ Generator  │  Database  │  Registry  │ Search  │
├────────────┴────────────┴────────────┴────────────┴─────────┤
│                    Vector Index Manager                       │
├───────────────────────────────────────────────────────────────┤
│               Storage Layer (LanceDB/Arrow)                   │
└───────────────────────────────────────────────────────────────┘

Core Components

1. Document Chunker

Responsible for segmenting documents into semantically meaningful chunks.

Key Features: - Multiple chunking strategies (sliding window, semantic, markdown-aware) - Configurable chunk size and overlap - Sentence boundary preservation - Metadata preservation

Data Flow:

Document → Chunker → Text Chunks → Embedding Generator

2. Embedding Generator

Converts text into high-dimensional vector representations.

Key Features: - ONNX Runtime integration - Batch processing support - Model-agnostic interface - Normalization and preprocessing

Architecture:

┌──────────────┐     ┌──────────────┐     ┌──────────────┐
│   Text       │────▶│  Tokenizer   │────▶│    ONNX      │
│   Input      │     │              │     │   Runtime    │
└──────────────┘     └──────────────┘     └──────────────┘
                                                  │
                                                  ▼
                                          ┌──────────────┐
                                          │  Embedding   │
                                          │   Vector     │
                                          └──────────────┘

3. Vector Database

Persistent storage and retrieval of vector embeddings.

Key Features: - LanceDB integration for columnar storage - Apache Arrow format support - ACID compliance - Metadata filtering

Schema:

VectorTable {
    chunk_id: STRING (PRIMARY KEY)
    document_hash: STRING
    embedding: FLOAT32[]
    content: STRING
    metadata: MAP<STRING, STRING>
    model_id: STRING
    model_version: STRING
    embedding_version: INT32
    created_at: TIMESTAMP
    is_stale: BOOLEAN
}

4. Vector Index Manager

Manages different index types for efficient similarity search.

Supported Index Types:

Index Type Description Use Case
FLAT Brute force search Small datasets (<10K)
HNSW Hierarchical graph Medium datasets (10K-1M)
IVF_FLAT Inverted file index Large datasets (>100K)
IVF_PQ Product quantization Very large datasets (>1M)

Index Selection Logic:

if (num_vectors < 10000) {
    return IndexType::FLAT;
} else if (num_vectors < 100000) {
    return IndexType::HNSW;
} else if (memory_constraint) {
    return IndexType::IVF_PQ;
} else {
    return IndexType::IVF_FLAT;
}

5. Model Registry

Manages embedding models and their lifecycle.

Key Features: - Model versioning - Performance tracking - Compatibility matrix - Hot-swapping support

Model Lifecycle:

Register → Load → Cache → Use → Monitor → Update/Replace

6. Hybrid Search Engine

Combines vector and keyword search for improved results.

Architecture:

┌─────────────┐     ┌─────────────┐
│   Vector    │     │   Keyword   │
│   Search    │     │    Search   │
└──────┬──────┘     └──────┬──────┘
       │                    │
       └────────┬───────────┘
                │
         ┌──────▼──────┐
         │   Result    │
         │   Fusion    │
         └──────┬──────┘
                │
         ┌──────▼──────┐
         │   Ranked    │
         │   Results   │
         └─────────────┘

Data Flow

Indexing Pipeline

graph LR
    A[Document] --> B[Chunker]
    B --> C[Text Chunks]
    C --> D[Embedding Generator]
    D --> E[Vectors]
    E --> F[Index Manager]
    F --> G[Vector Database]

    H[Metadata] --> G
  1. Document Input: Raw documents enter the system
  2. Chunking: Documents are split into processable chunks
  3. Embedding: Each chunk is converted to a vector
  4. Indexing: Vectors are added to the search index
  5. Storage: Indexed vectors are persisted to database

Search Pipeline

graph LR
    A[Query Text] --> B[Embedding Generator]
    B --> C[Query Vector]
    C --> D[Index Search]
    D --> E[Candidate Vectors]
    E --> F[Similarity Scoring]
    F --> G[Ranking]
    G --> H[Results]

    I[Filters] --> D
  1. Query Processing: User query is converted to vector
  2. Index Search: Find candidate vectors using index
  3. Scoring: Calculate similarity scores
  4. Filtering: Apply metadata and threshold filters
  5. Ranking: Sort results by relevance

Scalability Design

Horizontal Scaling

Sharding Strategy:

Documents → Hash(doc_id) → Shard Assignment

Shard Distribution: - Consistent hashing for balanced distribution - Replication factor of 3 for availability - Cross-shard query aggregation

Vertical Scaling

Resource Optimization: - Memory-mapped indices for large datasets - Lazy loading of embeddings - Compression with Product Quantization - GPU acceleration for embedding generation

Caching Strategy

Multi-Level Cache:

L1: Query Result Cache (LRU, 1GB)
L2: Embedding Cache (LFU, 4GB)
L3: Model Cache (TTL, 8GB)

Performance Characteristics

Latency Targets

Operation P50 P95 P99
Embedding Generation 10ms 25ms 50ms
Vector Search (10K) 5ms 15ms 30ms
Vector Search (1M) 20ms 50ms 100ms
Batch Insert (100) 50ms 100ms 200ms

Throughput Targets

  • Embedding Generation: 1000 docs/sec
  • Vector Search: 5000 QPS
  • Index Updates: 10000 vectors/sec
  • Batch Operations: 100K vectors/batch

High Availability

Fault Tolerance

Component Redundancy: - Multiple embedding service instances - Replicated vector indices - Database replication - Load balancer failover

Recovery Mechanisms:

1. Health checks every 10s
2. Automatic failover < 30s
3. Data consistency verification
4. Incremental recovery

Backup Strategy

Backup Schedule: - Incremental: Every hour - Full: Daily at 02:00 UTC - Retention: 30 days

Backup Components: - Vector embeddings - Index structures - Model checkpoints - Configuration

Security Considerations

Data Protection

  • Encryption at Rest: AES-256 for stored vectors
  • Encryption in Transit: TLS 1.3 for API calls
  • Access Control: Role-based permissions
  • Audit Logging: All operations logged

Privacy

  • PII Handling: Automatic redaction in logs
  • Data Retention: Configurable TTL for vectors
  • Right to Deletion: Support for GDPR compliance
  • Anonymization: Hash-based document IDs

Monitoring and Observability

Key Metrics

System Metrics: - CPU/Memory utilization - Disk I/O rates - Network throughput - Queue depths

Application Metrics: - Embedding generation rate - Search latency distribution - Index size and growth - Cache hit rates

Business Metrics: - Query volume - Result relevance scores - User satisfaction metrics - API usage patterns

Alerting Rules

alerts:
  - name: high_search_latency
    condition: p95_latency > 100ms
    severity: warning

  - name: low_cache_hit_rate
    condition: cache_hit_rate < 0.7
    severity: info

  - name: index_corruption
    condition: index_health_check == failed
    severity: critical

Integration Points

External Systems

Supported Integrations: - Elasticsearch (keyword search) - PostgreSQL (metadata storage) - Redis (caching layer) - Kafka (event streaming) - Prometheus (monitoring)

API Interfaces

REST API:

POST /api/v1/vectors/search
POST /api/v1/vectors/index
GET  /api/v1/vectors/{id}
DELETE /api/v1/vectors/{id}

gRPC API:

service VectorSearch {
    rpc Search(SearchRequest) returns (SearchResponse);
    rpc Index(IndexRequest) returns (IndexResponse);
    rpc GetVector(GetRequest) returns (VectorRecord);
}

Deployment Architecture

Container Architecture

services:
  embedding-service:
    image: kronos/embedding:latest
    replicas: 3
    resources:
      memory: 4GB
      cpu: 2

  vector-database:
    image: kronos/vector-db:latest
    replicas: 3
    volumes:
      - vector-data:/data

  index-manager:
    image: kronos/index-manager:latest
    replicas: 2
    resources:
      memory: 8GB

Kubernetes Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: vector-search
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: vector-search
        image: kronos/vector-search:latest
        resources:
          requests:
            memory: "4Gi"
            cpu: "2"
          limits:
            memory: "8Gi"
            cpu: "4"

Future Enhancements

Planned Features

  1. Multi-Modal Search: Support for image and audio embeddings
  2. Cross-Lingual Search: Multi-language support
  3. Federated Search: Distributed search across regions
  4. AutoML: Automatic model selection and tuning
  5. Graph Embeddings: Knowledge graph integration

Research Areas

  • Neural architecture search for optimal models
  • Quantum computing for similarity calculations
  • Homomorphic encryption for private search
  • Continual learning for model updates

Appendix

Configuration Reference

vector_search:
  embedding:
    model: all-MiniLM-L6-v2
    dimension: 384
    batch_size: 32

  index:
    type: HNSW
    parameters:
      m: 16
      ef_construction: 200
      ef_search: 50

  database:
    path: /data/vectors
    cache_size: 4GB
    max_connections: 100

  search:
    default_k: 10
    max_k: 100
    similarity_threshold: 0.7

Performance Tuning Matrix

Parameter Small Dataset Medium Dataset Large Dataset
Index Type FLAT HNSW IVF_PQ
Batch Size 16 32 64
Cache Size 1GB 4GB 16GB
Shards 1 4 16
Replicas 1 2 3