Vector Search Architecture¶
System Overview¶
The YAMS Vector Search system provides semantic search capabilities through a modular architecture that processes text into vector embeddings and enables similarity-based retrieval.
┌─────────────────────────────────────────────────────────────┐
│ Application Layer │
├─────────────────────────────────────────────────────────────┤
│ Semantic Search API │
├────────────┬────────────┬────────────┬────────────┬─────────┤
│ Document │ Embedding │ Vector │ Model │ Hybrid │
│ Chunker │ Generator │ Database │ Registry │ Search │
├────────────┴────────────┴────────────┴────────────┴─────────┤
│ Vector Index Manager │
├───────────────────────────────────────────────────────────────┤
│ Storage Layer (LanceDB/Arrow) │
└───────────────────────────────────────────────────────────────┘
Core Components¶
1. Document Chunker¶
Responsible for segmenting documents into semantically meaningful chunks.
Key Features: - Multiple chunking strategies (sliding window, semantic, markdown-aware) - Configurable chunk size and overlap - Sentence boundary preservation - Metadata preservation
Data Flow:
Document → Chunker → Text Chunks → Embedding Generator
2. Embedding Generator¶
Converts text into high-dimensional vector representations.
Key Features: - ONNX Runtime integration - Batch processing support - Model-agnostic interface - Normalization and preprocessing
Architecture:
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Text │────▶│ Tokenizer │────▶│ ONNX │
│ Input │ │ │ │ Runtime │
└──────────────┘ └──────────────┘ └──────────────┘
│
▼
┌──────────────┐
│ Embedding │
│ Vector │
└──────────────┘
3. Vector Database¶
Persistent storage and retrieval of vector embeddings.
Key Features: - LanceDB integration for columnar storage - Apache Arrow format support - ACID compliance - Metadata filtering
Schema:
VectorTable {
chunk_id: STRING (PRIMARY KEY)
document_hash: STRING
embedding: FLOAT32[]
content: STRING
metadata: MAP<STRING, STRING>
model_id: STRING
model_version: STRING
embedding_version: INT32
created_at: TIMESTAMP
is_stale: BOOLEAN
}
4. Vector Index Manager¶
Manages different index types for efficient similarity search.
Supported Index Types:
Index Type | Description | Use Case |
---|---|---|
FLAT | Brute force search | Small datasets (<10K) |
HNSW | Hierarchical graph | Medium datasets (10K-1M) |
IVF_FLAT | Inverted file index | Large datasets (>100K) |
IVF_PQ | Product quantization | Very large datasets (>1M) |
Index Selection Logic:
if (num_vectors < 10000) {
return IndexType::FLAT;
} else if (num_vectors < 100000) {
return IndexType::HNSW;
} else if (memory_constraint) {
return IndexType::IVF_PQ;
} else {
return IndexType::IVF_FLAT;
}
5. Model Registry¶
Manages embedding models and their lifecycle.
Key Features: - Model versioning - Performance tracking - Compatibility matrix - Hot-swapping support
Model Lifecycle:
Register → Load → Cache → Use → Monitor → Update/Replace
6. Hybrid Search Engine¶
Combines vector and keyword search for improved results.
Architecture:
┌─────────────┐ ┌─────────────┐
│ Vector │ │ Keyword │
│ Search │ │ Search │
└──────┬──────┘ └──────┬──────┘
│ │
└────────┬───────────┘
│
┌──────▼──────┐
│ Result │
│ Fusion │
└──────┬──────┘
│
┌──────▼──────┐
│ Ranked │
│ Results │
└─────────────┘
Data Flow¶
Indexing Pipeline¶
graph LR
A[Document] --> B[Chunker]
B --> C[Text Chunks]
C --> D[Embedding Generator]
D --> E[Vectors]
E --> F[Index Manager]
F --> G[Vector Database]
H[Metadata] --> G
- Document Input: Raw documents enter the system
- Chunking: Documents are split into processable chunks
- Embedding: Each chunk is converted to a vector
- Indexing: Vectors are added to the search index
- Storage: Indexed vectors are persisted to database
Search Pipeline¶
graph LR
A[Query Text] --> B[Embedding Generator]
B --> C[Query Vector]
C --> D[Index Search]
D --> E[Candidate Vectors]
E --> F[Similarity Scoring]
F --> G[Ranking]
G --> H[Results]
I[Filters] --> D
- Query Processing: User query is converted to vector
- Index Search: Find candidate vectors using index
- Scoring: Calculate similarity scores
- Filtering: Apply metadata and threshold filters
- Ranking: Sort results by relevance
Scalability Design¶
Horizontal Scaling¶
Sharding Strategy:
Documents → Hash(doc_id) → Shard Assignment
Shard Distribution: - Consistent hashing for balanced distribution - Replication factor of 3 for availability - Cross-shard query aggregation
Vertical Scaling¶
Resource Optimization: - Memory-mapped indices for large datasets - Lazy loading of embeddings - Compression with Product Quantization - GPU acceleration for embedding generation
Caching Strategy¶
Multi-Level Cache:
L1: Query Result Cache (LRU, 1GB)
L2: Embedding Cache (LFU, 4GB)
L3: Model Cache (TTL, 8GB)
Performance Characteristics¶
Latency Targets¶
Operation | P50 | P95 | P99 |
---|---|---|---|
Embedding Generation | 10ms | 25ms | 50ms |
Vector Search (10K) | 5ms | 15ms | 30ms |
Vector Search (1M) | 20ms | 50ms | 100ms |
Batch Insert (100) | 50ms | 100ms | 200ms |
Throughput Targets¶
- Embedding Generation: 1000 docs/sec
- Vector Search: 5000 QPS
- Index Updates: 10000 vectors/sec
- Batch Operations: 100K vectors/batch
High Availability¶
Fault Tolerance¶
Component Redundancy: - Multiple embedding service instances - Replicated vector indices - Database replication - Load balancer failover
Recovery Mechanisms:
1. Health checks every 10s
2. Automatic failover < 30s
3. Data consistency verification
4. Incremental recovery
Backup Strategy¶
Backup Schedule: - Incremental: Every hour - Full: Daily at 02:00 UTC - Retention: 30 days
Backup Components: - Vector embeddings - Index structures - Model checkpoints - Configuration
Security Considerations¶
Data Protection¶
- Encryption at Rest: AES-256 for stored vectors
- Encryption in Transit: TLS 1.3 for API calls
- Access Control: Role-based permissions
- Audit Logging: All operations logged
Privacy¶
- PII Handling: Automatic redaction in logs
- Data Retention: Configurable TTL for vectors
- Right to Deletion: Support for GDPR compliance
- Anonymization: Hash-based document IDs
Monitoring and Observability¶
Key Metrics¶
System Metrics: - CPU/Memory utilization - Disk I/O rates - Network throughput - Queue depths
Application Metrics: - Embedding generation rate - Search latency distribution - Index size and growth - Cache hit rates
Business Metrics: - Query volume - Result relevance scores - User satisfaction metrics - API usage patterns
Alerting Rules¶
alerts:
- name: high_search_latency
condition: p95_latency > 100ms
severity: warning
- name: low_cache_hit_rate
condition: cache_hit_rate < 0.7
severity: info
- name: index_corruption
condition: index_health_check == failed
severity: critical
Integration Points¶
External Systems¶
Supported Integrations: - Elasticsearch (keyword search) - PostgreSQL (metadata storage) - Redis (caching layer) - Kafka (event streaming) - Prometheus (monitoring)
API Interfaces¶
REST API:
POST /api/v1/vectors/search
POST /api/v1/vectors/index
GET /api/v1/vectors/{id}
DELETE /api/v1/vectors/{id}
gRPC API:
service VectorSearch {
rpc Search(SearchRequest) returns (SearchResponse);
rpc Index(IndexRequest) returns (IndexResponse);
rpc GetVector(GetRequest) returns (VectorRecord);
}
Deployment Architecture¶
Container Architecture¶
services:
embedding-service:
image: kronos/embedding:latest
replicas: 3
resources:
memory: 4GB
cpu: 2
vector-database:
image: kronos/vector-db:latest
replicas: 3
volumes:
- vector-data:/data
index-manager:
image: kronos/index-manager:latest
replicas: 2
resources:
memory: 8GB
Kubernetes Deployment¶
apiVersion: apps/v1
kind: Deployment
metadata:
name: vector-search
spec:
replicas: 3
template:
spec:
containers:
- name: vector-search
image: kronos/vector-search:latest
resources:
requests:
memory: "4Gi"
cpu: "2"
limits:
memory: "8Gi"
cpu: "4"
Future Enhancements¶
Planned Features¶
- Multi-Modal Search: Support for image and audio embeddings
- Cross-Lingual Search: Multi-language support
- Federated Search: Distributed search across regions
- AutoML: Automatic model selection and tuning
- Graph Embeddings: Knowledge graph integration
Research Areas¶
- Neural architecture search for optimal models
- Quantum computing for similarity calculations
- Homomorphic encryption for private search
- Continual learning for model updates
Appendix¶
Configuration Reference¶
vector_search:
embedding:
model: all-MiniLM-L6-v2
dimension: 384
batch_size: 32
index:
type: HNSW
parameters:
m: 16
ef_construction: 200
ef_search: 50
database:
path: /data/vectors
cache_size: 4GB
max_connections: 100
search:
default_k: 10
max_k: 100
similarity_threshold: 0.7
Performance Tuning Matrix¶
Parameter | Small Dataset | Medium Dataset | Large Dataset |
---|---|---|---|
Index Type | FLAT | HNSW | IVF_PQ |
Batch Size | 16 | 32 | 64 |
Cache Size | 1GB | 4GB | 16GB |
Shards | 1 | 4 | 16 |
Replicas | 1 | 2 | 3 |